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Quantum Spinor Structures for Quantum Spaces!
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A genera theory of quantum spinor structures on quantum spaces is presented
within the formalism of quantum principal bundles. Quantum analogs of basic
objects of the classical theory are constructed: Laplace and Dirac operators,
guantum versions of Clifford and spinor bundles, a Hodge (operator, integration
operators. Quantum phenomena are discussed, including an example of the Dirac
operator associated to a quantum Hopf fibration.

1. INTRODUCTION

The aim of this study is to present a general theory of spinor structures
over guantum spaces, in the spirit of nhoncommutative differential geometry
(Connes, 1994). The framework is the theory of quantum principal bundles
(Purdevich, 19963, 1997), where quantum groups play therole of the structure
groups and quantum spaces play the role of base manifolds.

The formalism presented here could be used for developing a theory
of fermions over a quantum space-time, appropriate at ultrasmall distances
characterized by the Planck length. Our formalism fulfils various conditions
proposed in a general axiomatic framework (Connes, 1994). However, some
key conditions of Connes (1994) are not satisfied in our formalism. This
includes the spectral asymptotics of the quantum Dirac operator, which in
our case, could bevery different from the classical behavior. Our constructions
are not compatible with the Dixmier trace. Our constructions provide a
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coherent framework for the formulation of quantum eliptic operators
(Burdevich, 2000a) and the study of the index theorems.

The results of this paper include as a special case the spin structures
studied in Burdevich (1995), where quantum spin bundles with classical
structure groups were considered and it was assumed that the differential
calculus over the structure group is classical.

We shall use the general theory of frame structures on quantum principal
bundles (Burdevich, 1999) in order to develop the idea of a quantum space
equipped with ametric. We shall explain how to construct a graded *-algebra
Hotp representing horizontal formsstarting from ‘ abstract coordinate 1-forms
and a quantum principal bundle P. In accordance with Burdevich (1999), the
space of abstract coordinate 1-forms V will be defined as the left-invariant
part of a bicovariant bimodule ¥ over the structure quantum group G. The
group G acts on V by ‘orthogonal transformations'. There exists a canonical
braid operator 1 V ® V - V ® V playing the role of the transposition map
(Woronowicz, 1989). We shall introduce abstract Levi-Civita connections.
These objects contain the whole geometrical information about quantum
frame structures.

This is the most subtle part of the formalism, as it requires that we
introduce carefully a number of nontrivial conditions on base space M, struc-
ture guantum group G, and the bundle P.

After presenting the basic ideas of Burdevich (1999), we shall consider
special conditions which will further justify interpretation of M as a quantum
space equipped with ametric. Thisincludes analytic conditions, the existence
of the C*-algebraic completions of both the base space and the bundle *-
algebras, as well as the existence of a ‘homogeneous’ measure on the base
space M. Combining this measure with the integration along the fibers of P,
we shall construct a natural measure on the bundle.

One of the main, purely agebraic extra conditions will be the existence
of a ‘volume element’ in the algebra of coordinate horizontal forms. With
the help of the volume element and the measure on P, it will be possible to
construct the integration map [p: Hotp —» C.

A quantum version of the Euclidean structure on V will be represented
by ametricformg: V® V - 3, where X is a *-algebra of abstract metric
tensor coefficients. In general, % # C, and there exist deep reasons why it
is necessary to assume that components of the metric generate anoncommuta-
tive *-algebra.

Our definition of a quantum Clifford algebra in Section 3 is motivated
by considerations presented in Burdevich and Oziewicz (1996) and Oziewicz,
(1997), based on deformations of braided exterior algebras. Our main condi-
tion is similar, the vector space V" is equipped with a new product, however,
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this new product is a quantization of O with a noncommutative deforma
tion parameter.

An extended version of the paper containing all the proofs, which will
not be published elsewhere, and aso including braided Clifford algebras
presented in this issue, is available for download at the author’s website.

2. QUANTUM RIEMANNIAN GEOMETRY

We shall recall the definition and basic properties of quantum principal
bundles (Burdevich, 1996a, 1997) and frame structures (Burdevich, 1999)
on them. Quantum frame structures allow us to incorporate into the noncom-
mutative context a fundamental concept of coordinate 1-forms. This level is
sufficient to introduce general metric connections together with Levi-Civita
connections, covariant derivative, curvature, and torsion operators.

In order to focus on ‘true metric spaces’, we shall introduce some
analytical properties. We shall introduce the integration operators for both
the frame bundle and the base, the Laplace operator, the adjoint differential,
and the Hodge Choperator.

Let G be a compact matrix quantum group (Woronowicz, 1987b), for-
mally represented by a Hopf *-algebra 4. We shall denoteby ¢: A - A &
A the corresponding coproduct map. We shall use the symbols k: A — A
and e: 4 — C for the antipode and the counit map, respectively.

Let M be a compact quantum space represented by a *-algebra %" and
let P = (%, i, F) be a quantum principal G-bundle over M. By definition
(Burdevich, 1997), this means, that % is a *-algebra, i: V" - B isa*-
monomorphism, and F: B - B & o is a counital *-homomorphism such
that the following properties hold:

i. The action property. The following diagram is commutative:

B —. B
F| | 1d®b
B A F_®Td% QXARA
ii. The ‘orbit space’ identification: i(¥) = {b e %B|F(b) = b ® 1}.
iii. The freeness condition. A linear map X: B ®, B - B & oA given by

X(q® b) = gF(b)

issurjective. If the map X is surjective, then it will be automatically injective,
so that X is bijective (Burdevich, 1996b). Thus, the freeness condition leads
into the Hopf—Galois extensions (Schneider, 1994).
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In a specia case of the frame structures representing ‘vanilla quantum
Riemannian manifolds, the above freeness condition will be satisfied
automatically.

Let ¥ be a bicovariant (Woronowicz, 1989) bimodule over G. The
corresponding left and right co/action maps will be denoted by ly: ¥ - o
Q® Vand py: ¥ - ¥ Q& oA, respectively. Let V = W, be the corresponding
|eft-invariant part. There exists a natural identification ¥ « o ® V of left
A-modules. The structure of W is encoded in the restricted right action » =
(re|V): V - V ® o and a natural right s¢-module structure  on V, given
by ¥ o a = k(a®)¥a®. If ¥ is *-covariant, then the space V is *-invariant.
We have the following compatibility conditions between [ o, and x:

x[0= (0& Dx, (6ea)* = 6* o k(a)*
%(0oa) = % (0 ° a?) ® k(@)ca®, %ek ® ¢ = ()

We can assume that an auxiliary x-invariant scalar product (|) is defined
on V. However, for the purposes of our main considerations, the central role
will be played by a noncommutative scalar product in 'V, taking its valuesin
an appropriate *-algebra 3, generated by ‘abstract metric tensor coefficients'.

LetmV®YV - V& V bethe canonical braid operator (\Woronowicz,
1989) associated to V. It is computed in terms of » and ° as

T(n®ﬁ)=;ﬁk®(n°0k)

Let V" be the corresponding T-exterior algebra obtained from V& by
factorizing through the space of quadratic relations im(l + 7). At this point,
it is natural to assume that ker(l + 1) # {0}. This ensures the nontriviality
of the higher order part of V.

In what follows, the algebras V® and V" will be equipped with the
induced o, [0 and x-structures (these induced structures will be denoted by
the same symbols). The extended structures are constructed by postulating

%(Om) = %(V)x(n), ®»()=1®1
(ﬁ,n)* — (_)Bl‘)ﬁnn*ﬁ*
(Bm)eca=(BeoaV)(n-a?), 1lea=e@1l
The following identities express mutual compatibility between 7 and
the maps [ ¢, and x:

VOV, VRV A
T lﬂr®id

n
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VRV — VROVR® A
0= 0771, Tpea) =1lh)ca

Denote by C,: V - V the canonica intertwiner between » and its
second contragradient x¢. By construction, this map is positive and satisfies

xC, = (C, ® k¥)x,  tr(C,) = tr(C; Y
We shall assume that the scalar product on V is such that
x*, y) = (% Cu X Oxy eV D
To put it another way, we can define C,, by the above formula. This implies
c.0=c* C. =[O0

The operator C, is associated to the modular properties of the Haar measure
(Woronowicz, 1987b). Polary decomposing the map 0 V - V, we obtain

O=J,C¥2 =C,2y,

where J,: V - V is an antiunitary involution (in other words, J, = J} =

..
When dealing with various‘ coordinate expressions’, we shall use afixed
basis {6, ..., 84} in V. We shall assume that these vectors satisfy

(0, 6;) = &, J.(6;) = 6

In this basis, the representation »: V - V ® o is given by a unitary matrix
[%ij]! S0 that

%(0) = 2 6 @ xj, CYx]C, 12 = [«]
i

The matrix [CY?]; = (8;, C/20;) is orthogonal.

A ‘quantum Euclidean’ structure on V will be specified by a quadratic
foom g V® V - 3, playing the role of the metric, where 3, is a *-algebra
generated by matrix elements of g and g%, together with a new regular braid
operator o: V ® V - V ® V expressing the twisting properties of 3 and
V. This reflects a fundamental property of our theory, the noncommutativity
of the metric tensor coefficients and the braided nature of o. In general, o # 7.

The full set of properties involving g, o and 3 is discussed in
Burdevich (2000b). We shall also assumethat { o, 7} form apair of ‘ coupled’
braid operators, so that the following natural identifications hold for each n
=2
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{7-antisymmetric n-tensors} < im(A?) 2

Here AZ: V@M _, V" gre the braided t-antisymmetrizers. By definition, -
antisymmetric tensors change the sign under al t-transpositions. Our -
exterior algebra will be realizable as follows:

VI o VE/ker(A,) < im(A,)

These identifications are constructed with the help A,. The grading and the
*-gtructure are preserved in this picture. The maps C,, and J,, will be extended
(by multiplicativity/anti) to V. The space V" is invariant under the action
of these maps. As discussed in Burdevich (2000b), there is a hatural twisted
tensor product of algebras V- and 2., and in such away, we obtain an extended
braided exterior algebra V5. This is a braided exterior algebra built over Vs
with the help of the extended braid o: Vs ®s Vs - Vs Qs Vs.

A frame structure on a quantum principal bundle P is given by a graded
*-algebrahot, equipped with afirst-order Hermitian antiderivation V: hotp —
hHotp (Purdevich, 1999). The algebra fhotp is defined as Hotp < B @ VU at
the level of vector spaces, while the product and the *-structure are given by

(Q®ﬂ)(b®n):;qbk®(ﬁock)'ﬂ
(b ® 9)* =;b¢®(a*oc§), ;bk@)ck: F(b)

The elements of hotp are quantum horizontal forms. The elements of V©,
viewed in the framework of §otp, are analogs of natura ‘coordinate forms
in classica theory of frame bundles. We see that Hot = %. The maps F
and »: V¥ - VP ® o naturally combine to a unita *-homomorphism F:
hotp - Hotp ® oA satisfying

(d® $)F7 = FIQid)FY,  (id® ¢)F = id

The map F" plays the role of the right action of G on horizontal forms. The
corresponding. F--fixed-point graded *-subalgebra Q C Hotp playstherole
of the differential forms on the base manifold M. Accordingly, QY = V.

The map V: oty — Hotp corresponds to the Levi-Civita connection.
By definition, V intertwines the action FX, and V vanishes on the subalgebra
generated by V(V) and V"

It is assumed that there exist linear maps b,: 6 — b,(6) € 9B and
dements f, € V' satisfying a completeness condition,

1®6 =2 by(6) V(f) 3)

Flb.(8)] = (b, ® id)»(8) 4
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From the above-mentioned postulates, it follows that V is reduced in €, and
that the restriction map Md: O - Qy isaHermitian differential (correspond-
ing to the standard exterior derivative of differential forms). It can be shown
that Qy, is generated by " and Md(%").

We can introduce a ‘coordinate’ description of V,

V)= ab)®6, bed (5)

The maps 9;: B - B are counterparts of canonical horizontal coordinate
vector fields. They completely determine V. The F" covariance of V is
equivalent to the property

Fa|(b) = JEK 8,- (bk) & CkK_l(%ij)
F(b) = > b ® ¢, > 0 ® 5 = %(6;)
k i

Let w: B - My(B) be a*-homomorphism defining the right %3-module
structure on Hotp,

0ib = > i (b)6;
J
The graded Leibniz rule for V is trandated into the system of equations
3i(gb) = gai(b) + X a;(@pi(b)
I

Let v: i —~ M¢(C) be aunital homomorphism given by 6; ° a = 3; v;;(a)6;.
The maps w: B -~ %B are expressible via the right s{-module structure on
V and the map F as

nij(b) = Ek: bievij(Co)

The introduced coordinate vector fields fit into a general framework for
guantum vector fields introduced in Borowiec (1996; see also Borowiec,
1997; Borowiec et al., 2000).

The following identity expresses the compatibility between - and the [}
structure on V:

v[k(@)*] = C; Y (@)Cy? (6)
The Hermiticity property of V in terms of the maps 9; is
0 = 2 [C2ulii{ 95}, o = "o~ (7)
I

The structure group G corresponds to a transformation group of ‘local ortho-
normal frames'. The frame structure alows us to think of P as the bundle
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of ‘orthonormal frames' over M. In accordance with this analogy, it would
be natural to assume that » is faithful (in other words, G is completely
determined by its action on V, which means that s{ is generated by the matrix
elementsof »). However, from the point of view of our spinorial constructions,
it is natural to allow the situations where x is not faithful (G < Spin(m)).
This alows us to include the spin structures within the framework of the
frame structures.

Lemma 2.1. In the case of ‘trully frame bundles’, when % is faithful,
the freeness condition for F is automatically fulfilled.

We are now going to write down commutation relations between coordi-
nate vector fields d;, involving the curvature tensor. Let us recall that the
curvature py: - 3h3 of V is uniquely determined through a fundamen-
tal identity

Vi(b) = —; bipv(Cid (8)

Here 30p isthe graded commutant of )y in Hotp. The fact that the curvature
always take values from 352 implies strong constraints for possible forms of
a Levi-Civita connection in noncommutative geometry.

The canonical inclusion of the exterior algebra into the tensor algebra
allows us to define the ‘components p¥: 4 — 9% of the curvature by the
formula

or(@) = 53 pbla) ® (0@ )
The components by construction satisfy T-antisymmetricity relations
pY = —% wp¥, (6 ®6) = % HO ® 6,
Lemma 2.2.
%3)(b) — X ol adi(b) + 3 3 bupk(c,) = 0

% O'ﬁlek ® Bi = (r(Oi ® 6])

2.1. Integration Operators

We shall assume that V" isrealized as an everywhere dense * -subalgebra
of aunital C*-algebra V. We shall also assume that a faithful state wy: V' -
Cisgiven (representing a‘ measure’ on quantum base space M ). By definition,
the faithfulness property means that wy, is strictly positive on the positive
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elements. We shall assume that oy, admits a modular operator ©: V" - V'
of the form

ou(fg) = on(0(g)f)  Of,ge¥

Themodular operator O isuniquely determined by the state wy. Thefollowing
identities hold:

O(fg) = O(1)O(9). o =0

and we see that © is necessarily bijective.

We shall introduce compatibility conditions between the quantum princi-
pal bundle P with the frame structure and the measure wy, with the associated
modular automorphism O.

Let us introduce a ‘vertical integration’ operator [,: B - V" by

|U (b)] — (id ® h)F(b)

where h: 4 - C is the Haar measure (Woronowicz, 1987b) of G.

First Assumption on P—3trict Positivity. The map [, isstrictly positive,
Ob e B, J (b*b) = 0, andif j (b*b) =0, then b=0
1 T

This property ensures that the *-algebra % is closable into a C*-algebra B,
using a natural GNS-type faithful *-representation by bounded operators.

By combining [, and wy, we arrive at a faithful state wp: B - C
playing the role of the ‘measure’ on the bundle P. Let us assume that wp
admits a modular operator ©: B — 9.

Lemma 2.3. We have FO = (6 ® «dF, O[V] =V, and © I ¥ = ©.

The space % is equipped with a natural F-invariant scalar product
given by

(b, @) = wp(b*q)
Playing with the definitions of © and ( , ), it follows that O % — % is
formally adjointable. Accordingly,
(b,g*) =(q,[d'b)) Og,be®d, [T=6"'10=0

Let I beacomplete set of mutually noneguival ent irreducibl e representa-
tions of G. By decomposing % into the multiple irreducible submodules
relative to the action F, we arrive at
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B = %R R o €, @ H,
aed
Here we have used intertwiner bimodules €, = Mor(«, F), and H, are the
corresponding representation spaces. If @ is the trivial representation in C,
then B>« V. Foreacha € 7, letusdenoteby {}.: B — RB*the corresponding
projection map. The vertical integration map is given by projecting % onto
v, in other words, [, < { }&.

Second Extra Assumption on P—Horizontal Homogeneity. Consider the
elements b, = b,(6;). Then

U)M{E [C;l]ji ai (bajf)} =0 Of e V
1

This condition expresses the idea that the measure on M is
‘homogeneous .

The maps 9;: B — B play the role of canonical horizontal vector fields,
and wy should be invariant under the appropriate ‘infinitesimal horizontal
transformations' . Thefirst-order * differential’ operatorsT,: V" — V' defined by

Tu(f) = X [Ci9i(by T)
ij
figure in the above expression. These operators are naturally associated to
the frame structure.

Lemma 2.4. Under the above homogeneity and positivity assumptions,
we have

welo;(0)] =0 Obe B

It isinteresting to calculate the formally adjoint operators for important
coordinate maps wij: B - B and 9;: B - B.

Lemma-2.5. The maps w;; and o; are formally adjointable and
ri(b) = Cu(b)C, 7 9)
—of = X [C. Y50, = X wi{or) (10
J ]
We are going to construct the integration operator for horizontal forms.

This will be done by combining the measure wp and a ‘ coordinate volume
form’ the existence of which will be ensured by our next extra condition.

Third Extra Condition—Self-Duality of Coordinate Forms. There exists
anumber m e N such that V™ « C and V™ = {0} for each k > m.
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We can introduce the ‘volume element’ as asingle generator w = w* e
VMM, The above condition follows from the simple assumption that the braided
exterior algebra V" is finite dimensional. Let us observe that the following
symmetry property holds:

\/Ek PEN \/Dm—k
This is because the formula
jx yyw=x0y

defines a nondegenerate pairing j: V% X VO™ _ C. It follows that there
exists a unique grade-preserving map <¢: V& - V" such that

%) = ()"0, y)  Oxye V"
From the definition of w, it follows that
x(W) =w® Q woa = \aw
where Q e « isa‘quantum determinant’ such that
$(Q=Q®Q «k(Q=Q'=Q=Q
and \: o - C isaunital multiplicative functional satisfying
A@) = Mk(a)*]

In general, m # d, in contrast with classica geometry.
We shall introduce the integration map [p: Hotp » C,

| op(b) for 9y =w
L(b@’ﬁ)_{o if degd <m

Lemma 2.6. [ Vo = 0, Op € hotp, and

[r=([f 3(m)es([s)ee
; o ® o = F(o)

A Hermitian involution Q naturally decomposes into Hermitian projec-
tions. Q,, Q- where Q. = 1/2 = Q/2. If themap \: 4 — C isin addition
central, then it will be possible to pass to the corresponding ‘ components’
of G, determined by Q... In particular, we can factorize through the Hopf *-
ideal generated by Q_, reducing to the case Q = 1. This is the quantum
version of unimodularity, passing from O(d) to SO(d) groups.
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Geometrically, such arestriction meansthat we are dealing with oriented
manifolds. In what follows, it will be assumed that orientability property
holds (and centrality of \, as a necessary consistency condition).

Lemma 2.7. [pe = (—)*" [p A(p)p, where A: hotp — botpisa
grade-preserving homomorphism defined by A(b ® ¥) = O(b)) ® ¢ (D)
and [], = (id ® MF.

We shall make extensive use of an extended horizontal forms algebra
hotpys obtained by mixing 2 with the standard horizontal forms. More pre-
cisely, hotps is obtained by taking the twisted tensor product between %

and the extended braided exterior algebra V5. We have obviously natural
left/right 93, 3-module identifications

hotpy © 2 @ hotp o hHotp @ 3

The action FY naturally extends, with the help of »s: 2 - 2 ® , to the
action F™: hotps — hotps ® s. The frame structure V naturally extends,
by >-left/right linearity, to a Hermitian antiderivation V: fotps — hHotps

The base space agebra )y is naturally included in Qys, which is
defined as the F™-fixed point subalgebra of otps. We shall freely pass from
extended to nonextended objects and vice versa.

2.2. The Hodge Operator

We shall introduce the Hodge Croperator on V¥. Then we will extend
it to hotps. We shall assume that V¥ is equipped with a 3-valued quadratic
form gg and the associated scalar product ( ), as explained in Burdevich
(2000b). Let an automorphism S 3 - 3 be such that

Sa)ca=Saca), [BEl=S! xS=(SQidxs
VE" = 3w = W, wa = Ja)w
The map j is extendible to a X-valued pairing acting within V¥,
(e, ¥0) = j(@ ¥)XA),  j@ V) =di(e¥), (e ab) = j(ea ¥)
i(@oa®, o a®) = NaD)ie, ¥) o a®
Proposition 2.8. (i) The formula go(x, y) = j(X, *[y]) uniquely defines

a linear operator »: V¥ — V¥ such that x(V§) C V¥ (ii) The map * is
bijective, and

A[xql = *[XISHa), [ =ax[x], qeX
wk = (* ® id)x (11)
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*(D o) = *(V)ca (12)

The automorphism S 3 — 2 has a simple structure, as it is sufficient
to calculate its action on the elements of the form g(x, y) where x, y € V.

Wehave oo w® x— T(X) ® wand o: y @ w— w &® T*(y), where
T: V - Visahijective linear operator. Using this, and iteratively applying
the definition of the X-bimodule structure on Vs, we find

Sx v} = (T7Hx), T(y)

The map T extends to a unital automorphism T: V¥ — V&, and the above
formula remains valid for arbitrary elements of braided exterior agebra.

Lemma 2.9. Let the concept of the adjoint operator be appropriately S
twisted, a necessary consistency condition, having in mind a right Stwisted
3-linearity of » and T. Then

M= T =T (xT(y) = S(TX), )},

X% *(y) = SHH*X), v}

Let § e V5" beredlized in the tensor algebra. The contraction operators
UX]: V¥ - VW are x| = (g ® id" 1)(x ® ). These operators are o-braided
antiderivations; they satisfy the o-braided Leibniz rule (cf. Oziewicz et al.,
1995),

Y + D Ve UX] =906 Y)  OxyeVs, DY, ®X% =0d(x®Y)

Using a natural X-valued scalar product in V¥, it follows that
xOOI = Jx] Ox e Vs

The contraction operators are the adjoint maps of the multiplication operators.

Lemma 2.10. [e] = + e O ( )]*. In other words, * acts as as a
conjugation between multiplication and contraction maps.
2.3. Extension to Horizontal Forms

The operator » will be extended to hotpys by left B-linearity,

*(b ® V) = b ® *() Ob e B, 0OV e V¥

Here it is necessary to deal with extended horizontal forms fotps. As a
conseguence of (11), we have

FD *p - (*p ® |d)|:D (13)
Thisintertwining property, together with (12) and the definition of the product
in hotpy, implies that *p is A-twisted right B-linear, *p(b,) = *p(Us)b.
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Definition 2.11. The map *; is called the Hodge Groperator for P.

Observe that *p (Qys) = Qus, as follows from (13). We shall denote
by *y: Qus - Qus the restricted map.

The introduced integration map [p: Hote — C naturally extends, by left
3-linearity, to [p: hotps — 3. Such an extended map intertwines the actions
of G and satisfies

L [¢"] = S{ j [«p]*}. J [oc] = J [¢)SQ) ges

Lemma 2.12. The formula (¢, {) = [p ¢* *p [U] defines a 2-valued
scalar product in hotps. This scalar product is G-covariant, and in terms of
the natural left %-module identification Hotps © B @ V¥, it is given by a
direct product of natural scalar products in V¥ and %.

In what follows, we shall assume that hotpy is equipped with the
constructed scalar product. The next lemma gives an explicit description of
the (formal) adjoint covariant derivative map.

Lemma 2.13. The map V: fotps — fotps is adjointable; there exists a
(necessarily unique) linear map V': Hotps — Hotpy such that

(@, V()) = (V(e), ¥) U, ¥ € hotp (14)
Vi) = — *p* Vap(l) (15)
The adjoint derivative V' is X-bilinear. It intertwines the right action FF,

FOV = (VI ®idFD, V' = —i 3 @ 1[0]] (16)

This can be proved in several ways; for example, it follows by taking
the adjoints of 9; and 6; in the coordinate expression for V. Let us observe that
V' generically takes the values from the extended horizontal algebra Hotps.

2.4. Quantum Laplacian

Definition 2.14. A linear operator Ap = VV' + V'V: fotps — Hotps
is called the quantum Laplacian.

A gquantum Laplacian Ap is a symmetric positive operator; it operates
within the extended horizontal forms algebra.

Proposition 2.15. Let F(b) = 2, b, ® ¢, and g; = 9(6;, 6;). Then
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1 i
Ap(b ® 9) = =) 9;9;(b) ® g ¥ + > > bupd(cs) ® 6:[6](9)
ij ijo
In general, maps g;: V¥ - V¥ will be nonscalar operators. Further ele-
mentary algebraic properties of Ap include the covariance property,

FoAp = (Ap ® id)F"
—Apkp! = ViV + #plVapVip!
—*xpAp = VX1V + *pVip Ve

According to (2.4), the map Ap is reduced in ()y,. We shal denote the
corresponding restriction map by Ay: Oy = Qu,

AM Md = Md AM! AM MdT = MdT AM! AM = (Md + MdT)Z

3. QUANTUM SPIN BUNDLES

The quantum spinor structure will be defined as ‘ covering bundles’ of
the ‘true orthonormal frame bundles'. Their structure group will be a kind
of a quantum spin group. We shall start by introducing quantum versions of
the Clifford bundle algebra and the associated spinor bundle. Here we shall
use atheory of braided Clifford algebras (Burdevich, 2000b). Our definition
of aquantum Clifford algebrais motivated by the braided approach devel oped
in Burdevich and Oziewicz (1996) and Oziewicz (1997), where Clifford
algebras are understood as deformations of the braided exterior algebras.

Throughout this section, we shall assume that the structure group G
possesses a specia ‘spinorial’ representation and consequently we shall relax
the faithfulness assumption for ». The frame structures on quantum spaces/
bundles are then interpretable as ‘ covering bundles’ of the ‘real’ orthonormal
frame bundles. The orthogonal quantum group G, corresponds to the Hopf
*-subalgebra sd, of s generated by the matrix dements ;.

The original orthonormal frame bundle Py is given by the *-subalgebra
By of B generated by multiple irreducible submodules of 9B corresponding
to the representations of Gy. Obviously F(Bg) C By & A and i(V) C RB,.
Taking the corresponding restriction maps, we obtain a quantum principal
Gg-bundle Py = (%, i, F) over M with the faithful action . Geometrically,
P is a kind of a covering space for Py, and P, corresponds to the ‘vanilla
orthormal frame bundle in classical geometry.

We shall formalize the idea of a ‘quantum spinor space’. We shall use
the quantum Clifford algebracl[V, g, o, 2] associated to V, metric coefficients
algebra X, the braid operator o, and quantum metric g: V ® V - 3. This
algebra is constructed by g-deforming the product in V¥ while preserving
the *-structure and the o-structure, as explained in Burdevich (2000b).
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Let usassume that afinite-dimensional Hilbert space S isgiven, together
with a unitary representation xs: S - S @ . Let us also assume that S
isan irreducible left *-module over cl[V, g, o, 2]. Finally, let us assume that
the following compatibility condition holds:

%§(Z§) = %E(Z)%S(g), Ze CI[\/u g o, 2]1 g €S

The meaning of this condition is that the action of G on cl[V, g, o, 3] can
be viewed as the adjoint action of »g in terms of operators acting in S.

Definition 3.1. If the above conditions are fulfilled, we shall say that S
is a quantum spinor space associated to G and cl[V, g, o, 2].

Thedl[V, g, o, 2]-module structure vy: cl[V, g, o, 2] - B(S) isgenerally
not faithful, and X may be infinite dimensional. The map v (including its
values on X)) is completely determined by the assignment v: V — B(S). This
simple observation can be used as a starting point in constructing X, and cl[V,
g, o, 2].

By combining the *-algebra structures on % and WV < cl[V, g, o, 2],
we obtain a*-algebra ¢[[P]. By construction, we have a natural identification
c[[P] « hotps of B-bimodules. The *-algebra structure on ¢[[P] is given by
the standard cross-product type formulas

<q®ﬁ)(b®n)=;qbk®(ﬁock)n
(b® 9)* =D b @ (B* o cf)
k

By taking the product of the actions ». and F, we obtain a *-homomor-
phism Fgis: ¢[[P] - c[[P] ® . Obviously, Fyi < FY, in terms of the
identification

c[[P] « hotps

We shall denote by c[[M] C c[[P] the Fyis-invariant *-subalgebra of c¢[[P].
Obviously, we have a natural identification

c[[M] « Qs

Starting from a quantum spinor space, we can define the associated
spinor bundle. Consider a free left B-bimodule ¥ = B & S. By taking the
product of actions F and xs, we obtain the map Fy: ¥ — ¥ & . There
exists anatural Fy-invariant scalar product on &, defined by taking the direct
product of the scalar productsin S and %8. In what follows, we shall assume
that & is equipped with this scalar product. Let ¥, C & be the subspace of
Fy-invariant elements. This space is a V-bimodule, in a natural way. In
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accordance with our general discussion, it is interpretable as the appropriate
associated spinor bundle.

Definition 3.2. The *-algebra ¢c[[M] is called a quantum Clifford bundle
algebra over the space M. The V'-bimodule &), is called a quantum spinor
bundle, and its elements are called quantum spinor fields over M.

It is possible to introduce a natural action map B: ¢[[P] ® ¥ - & of
c[[P] on &,

Q®x)(b® ) = ; by @ (x° (L]

Thisdefinesafaithful unital action of ¢[[P] on &, intertwining the correspond-
ing natural coactions Fyi;; X Fy and Fg, in particular B(cIM] & Fy) = P

Proposition 3.3. The action B: ¢[[P] ® ¥ - & is Hermitian for each
o e Fand T e cl[P], (b, To) = (T*Y, @).

4. QUANTUM DIRAC OPERATOR

The quantum Dirac operator acts in the quantum spinor bundle. We
refer to Oziewicz, (1998) for a diagrammatic braided-algebraic foundation
of the Dirac operator.

Consider a linear operator D: ¥ - & given by

Db®x) = —i S, 4(b) ® 6[x]
J

where we have interpreted the elements of V as linear operators in S in
accordance with our definition of quantum Clifford algebras.

Proposition 4.1. (i) The map D is Fy-covariant, F4D = (D & id)Fg,
D(Fm) C Fu. (i) b, D(e)) = (D().¢) for each §, ¢ € F.

Definition4.2. Themap D: ¥y —» S iscalled aquantum Dirac operator
for M.

The following proposition shows that the Dirac operator contains the
whole information about the differential Md: Qy — Qu, as in the classical
theory. This fits into the axiomatic framework of Connes (1994). In contrast
to Connes (1994), the eigenvalues of our Dirac operator do not obey the
classical-type asymptotics in general.

Proposition 4.3. Let f and Md(f) be the sections of the Clifford algebra
bundle. Then [D, f] = Md(f), Of e V.

Definition 4.4. Let Ot = g(@i, 6]) S84 map Aq ng - .(fM, Ag) =
—3 0;0; ® g is called the spinorial Laplacian.
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A gquantum generalization of the Lichnerowicz (1963) formula is as
follows:

Proposition 4.5. D% = Ay + R, where R $y — Fy isthe Cliffordization
of the curvature, i.e., R < V2 in terms of the identification cl[V, g, o, 2] <
\VSH

5. EXAMPLE: QUANTUM HOPF FIBRATION

We shall sketch the construction of the basic objects of the game in the
case of the quantum 2-sphere (Podles, 1987) equipped with a canonical spin
structure coming from the quantum Hopf fibering. The structure group for
the Hopf fibering isthe classical U(1); however, the differential calculus over
it will be quantum. It turns out that in the quantum case, the spectrum of the
Dirac operator radically differs from the classical situation. This example
shows that the asymptotics of the eigenvalues of the Dirac operator could
be quite surprising in the noncommutative context. We are going to deal with
the Dirac operator over a quantum 2-sphere. We refer to Owczarek (1999)
for detailed calculations.

The quantum Hopf fibration is a quantum U(1) bundle over a quantum
2-sphere (Podles, 1987). Thetotal space of the bundleisgiven by the quantum
SU(2) group, the bundle *-algebra & is generated by two elements {«, v},
and the following relations (Woronowicz, 1987a):

w e [—1, 17\{0], ao* + uiyy* =1, a*a +y*y =1

ay = pye, eyt = pyte, oyt = vty
The Hopf *-algebra o« of the structure group G = U(1) is generated by a

single unitary element U. The coproduct is $(U) = U ® U. The following
matrix defines the fundamental representation of the quantum SU(2) group:

— *
Y o

The above relations defining % are equivalent to the unitarity property
u~! = u*. The coproduct map ¢: B — B ® B is uniquely determined by
d(U;j) = ik Uk ® uy. We have used the same symbol for the coproducts on
GandP.

Our structure group G isasubgroup of P in accordance with the identifi-
cation o < RB/gen(y, v*). If w # 1, —1, then G is exactly the classical part
of P. Theaction F: B - &B & oA is constructed from the coproduct by taking
the factor projection on the second tensoriand, in other words, F = (id &®
[ 1.)d. The algebra " describing the quantum 2-sphere M is defined as the
F-fixed point subalgebra of %, so that the map i is just the inclusion.
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Let us now sketch the construction of a canonical frame structure on
the quantum 2-sphere (Burdevich, 1998). The canonical 3-dimensional |eft-
covariant and *-covariant calculus ® over P is constructed in Woronowicz
(19874). The space ®;,, is spanned by the elements

ms =m(a - o*),  me=ma(y), M- =7(y)

and the canonical right 93-module structure  on ®;,, is given by

pZngea =mg  mMzoar = plng
q)invo'Y = (I)invoy* = {0}
PN o =mMe,  Meoat = pme

This B-module structure on ®,,, factorizes through the ideal gen {v, v*}
and induces a right s{-module structure on the same space (and will be
denoted by the same symbol). Let V be a vector space spanned by ..
It will be eguipped with the constructed o and *-structures, and we shall
assume that

M) =M. ®U% x(n)=m-®U?

Such a definition allows us to interpret x: V - V ® o as the adjoint action
of G coming from the group structure in P. It follows that (in the basis .)
the associated braid operator 7: V€2 _, V2 |ooks like

| 0o o0 w? o
Tl o w 0 o0
0 0 0 p2
The T-exterior algebra is given by the relations
m: =0, mMmm-=-—pwn

These relations are a subset of the relations defining the canonical higher
order calculus over P given by the universal differential envelope ® of ®
(Woronowicz, 1987b; Burdevich, 1996a, Appendix B). The remaining rela-
tions involving m3; are

m5=0, M. = pMumg

This means that otp is viewable as a subalgebra of ®" generated by 3B =
Hotd and theelementsm., n_. We canintroduce anatural projection homomor-
phism pyes: P - botp,
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pf)nt("rl3) =0, pbgf|borp = id

The canonical antiderivation V: hotp — §Hotp is defined as the composition
of this projection with the differential d: ®° - ®F.

The constructed map coincides with the covariant derivative of the
canonical regular connection introduced in Burdevich (1997). It corresponds
to the standard Levi-Civita connection on the 2-sphere.

We arein the context of the spin bundles. The analog of the orthonormal
frame bundle P, over the 2-sphere M is given by the *-subalgebra B, C B
corresponding to the quantum SO(3) group (even combinations of generators
a, v, ¥* a*). The structure group G = U(1) is here understood as a two-
fold covering of the structure group Gy = SO(2) of Pq.

A braid operator o is given by the matrix

1 0 0 0
|0 O Up? 0
710 n2 0 O
0 O 0 1
and the *-structure on V is specified by m% = pm_, while n§ = —m3. The

gquantum metric is defined by
gf- =0+- =p9+, G:+=90-=0
The algebra s, isinfinite dimensional. A realization of 3, in the Hilbert space
H = 12(Z) is given by
: 1 %
O+ Q(HZP“ &

where {g|k € Z} are canonical basis vectorsin H. A common domain Hy
for al the operators from 3, consists of rapidly decaying sequences.

For the spinor space, we shall take S = C? with the canonical basis
—) and the action

x| +) = [+) O U,  xg|-)=|-)@U™?
The metric g and the algebra 2 are completely determined by the assignment

0 1 [0 0
mHM”Z(() 0), n- —p 1’2(1 0)

=g m 0] = wlen- 1)l= (“g E) VS =C®C

+),

and the spinor representation y: 2 — B(S) is not faithful.
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We are now going to study the Dirac operator. For each spin level s e
N/2, let u® be the matrix of the canonical spin-s irreducible representation
of P. The matrix elements of all possible representations u® form a natural
basis in 9. Let us denote by % the subspace of 9B spanned by the matrix
elements of us. We have

&
B = B,
s=0

The coordinate vector fields d_, 9, of the frame structure coincide
with the spin creation and annihilation operators iK; for the right regular
representation given by the coproduct ¢: B — B & RB. Obviously db(RBs) C
Bs ® RBg, and, moreover, the space B is characterized as the multiple
irreducible spin-s subspace of %. In terms of the matrix elements ujj, the
operators 9. act nontrivially only on the second indexes, while the first
indexes are ‘free'.

Therefore, we can write

F o H® - @ H,

2.+1
and introduce a canonical basis in %Bs of the form {YTm, o = —
S, ...,St. Here a is interpreted as a ‘degeneration index’. In summary,
we have
. 1
Koy = —i0.(b5y) = lLW{S = m),(s+ m+ 1)}
K- = —i0-(W1) = —5S5{(s — m + 1),(s + m),} YAt
1-— |J~‘2n
F(Uay) = das®@ U™, N, = 1= 2
Hence the spinor module ¥ is decomposed as follows:
D
F= > Y
seN-1/2

where the spaces ¥ are spanned by vectors %2 ® |—) and {5,&? ® |+) with
the degeneracy index o arbitrary.
The Dirac operator is

o 0 0 0 1
||D—a+®<1 0>+a®<0 0)

and it follows that D(¥) C &5 for each s e N — 1/2. It is how very easy
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to diagonalize the reduced operators. We have two eigenvalues with the
eigenvectors of the form Dysfs = A\abls and Do = — Aalias, Where
st12 _ ,—s-1/2
= E—F— (17)
(VA V¥

In the above formulas, we assumed that . = 0. The spectrum isinvariant if
we replace p — —w. On the other hand, if w = 1, —1, the spectrum will
be given by A\; = 2s. The case p = —1 is very specia, as it gives us a
gquantum spin bundle over the classical 2-sphere M. It illustrates a general
phenomenon that the classification problem of quantum principal bundlesis
qualitatively different from its classical counterpart, even if both the base
manifold and the structure group are classical.

6. DISCUSSION OF QUANTUM PHENOMENA

In classical geometry, very important geometrical information is con-
tained in the eigenvalues of eliptic operators. In particular, the distribution
of eigenvalues of the Dirac operator reflects the structure of compact Rieman-
nian spin manifolds.

If we look at the assymptotics of the spectrum of (the modulus of) the
Dirac operator over the quantum 2-sphere (with their degeneracies taken into
account), we arrive at the expression

N f = =*1
[N T

w N2 if we(,1)

with the symmetry . — —p. In particular, we see that the inverse of the
Dirac operator is trace class in the fully quantum case w # 1, —1. Thisis
not compatible with the formulation proposed in Connes (1994), where it
was assumed that the quantum Dirac operator will always have a similar
asymptotics as in classical geometry

ay ~ NV, d = dim(M)

Quantum geometry gives us more freedom, and it is not possible to
cover the diversity of all possible quantum spaces by a single asymptotic
expression. In our theory (as far as we consider the pure Riemannian geome-
try), the group G plays the role of special orthogonal structure group SO(d)
and x plays the role of its fundamental representation. In various interesting
examples, the representation »: V - V ® s will be irreducible. However,
in general, this representation will be reducible. The fact that 3, # C alows
us to overcome inherent obstacles that would appear in the formalism in the
case of an irreducible x: V - V & oA.
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This is due to the fact that the braid operators 7, o: VR V - VY,
the *-structure, and the quadratic form on V are all x-covariant. If the metric
g would take values from C, then using elementary algebraic operations with
g, * and o, 7, we would be able to build various intertertwiners of » out of
these objects. In general, these intertwiners would be nonscalar operators,
which implies that » will be reducible. The nontriviality of % overcomes
this obstacle.

Another quantum phenomenon is that the grade m of the volume form
w is not necessarily the same as the number d of coordinate one-forms,
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